Bax involvement in p53-mediated neuronal cell death.
نویسندگان
چکیده
The tumor suppressor gene p53 has been implicated in the loss of neuronal viability, but the signaling events associated with p53-mediated cell death in cortical and hippocampal neurons are not understood. Previous work has shown that adenovirus-mediated delivery of the p53 gene causes cortical and hippocampal neuronal cell death with some features typical of apoptosis. In the present study we determined whether p53-initiated changes in neuronal viability were dependent on members of the Bcl-2 family of cell death regulators. Primary cultures of cortical neurons were derived from animals containing Bax (+/+ and +/-) or those deficient in Bax (-/-). Cell damage was assessed by direct cell counting and by measurements of MTT activity. Neurons containing at least one copy of the Bax gene were damaged severely by exposure to excitotoxins or by the induction of DNA damage. In contrast, Bax-deficient neurons (-/-) exhibited significant protection from both types of injury. Bax protein expression was elevated significantly by glutamate exposure, but not by camptothecin-induced DNA damage in wild-type neurons. The glutamate-induced increase in Bax protein was dependent on the presence of the p53 gene. However, increased p53 expression, using adenovirus-mediated transduction, was not sufficient by itself to elevate Bax protein levels. These results demonstrate that Bax is required for neuronal cell death in response to some forms of cytotoxic injury and further support the key role for p53 activation in response to excitotoxic and genotoxic injury.
منابع مشابه
Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons.
p53 is a pivotal molecule regulating the death of neurons both after acute injury and during development. The molecular mechanisms by which p53 induces apoptosis in neuronal cells, however, are not well understood. We have shown previously that adenovirus-mediated p53 gene delivery to neurons was sufficient to induce apoptosis. In the present study we have examined the molecular mechanism by wh...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملPeroxiredoxin 2 battles poly(ADP-ribose) polymerase 1- and p53-dependent prodeath pathways after ischemic injury.
BACKGROUND AND PURPOSE Ischemic/reperfusion neuronal injury is characterized by accumulation of reactive oxygen species and oxidative DNA damage, which can trigger cell death by various signaling pathways. Two of these modes of death include poly(ADP-ribose) polymerase 1-mediated death or p53- and Bax-mediated apoptosis. The present study tested the hypothesis that peroxiredoxin 2 (PRX2) attenu...
متن کاملASPP2 involvement in p53-mediated HIV-1 envelope glycoprotein gp120 neurotoxicity in mice cerebrocortical neurons
The mechanisms behind HIV-1-associated neurocognitive disorders are still unclear. Apoptosis-stimulating protein 2 of p53 (ASPP2) is a damage-inducible p53-binding protein that stimulates p53-mediated apoptosis and transactivates proapoptotic and cell cycle regulatory genes. It has been reported that ASPP2 has a specific regulatory function in the death of retinal ganglion cells and the develop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 4 شماره
صفحات -
تاریخ انتشار 1998